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Abstract
We present the results of our numerical calculations that focus on the dynamics
of a nematic liquid crystal around a spherical particle imposing strong
homeotropic anchoring at the surface. The first part of this article is devoted to
the discussion of the effect of an external magnetic or electric field on the director
configuration of a nematic liquid crystal. With the aid of an adaptive mesh
refinement scheme, together with the tensor description of the orientational
order, for the first time in numerical calculations we successfully reproduce the
transition from a hyperbolic hedgehog defect to a Saturn ring defect, which was
observed in a recent experiment. We also find that the trajectories of the defect
core sensitively depend on the field strength. In the second part we investigate
how a hydrodynamic flow influences the orientational order of a nematic liquid
crystal around a particle carrying a hyperbolic hedgehog defect. We observe
that for an intermediate Ericksen number, which characterizes the ratio of the
viscous force to the elastic force of a nematic liquid crystal, the liquid crystal is
strongly convected by the flow,which results in a considerable elastic distortion.

1. Introduction

Liquid crystal colloid dispersions provide a novel class of composite materials and have
attracted considerable interest in the technology as well as in the fundamental science [1–
6]. Most of the fascinating properties of liquid crystal colloid dispersions arise from the
elastic distortion of a liquid crystal due to the surface anchoring of the dispersed particles or
droplets [7–10]. Various kinds of superstructures formed by particles such as linear chains [2]
and periodic lattices [6] are attributed to the interaction between particles mediated by the
elastic deformation of a liquid crystal surrounding them.
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Another interesting property of liquid crystal colloid dispersions is that topological defects
accompany particles to preserve the neutrality of topological charges when the anchoring
of the surface of the particles and the resultant deformation of a liquid crystal are strong
enough [2, 11, 12]. Experimentally observed defects include a point-like defect called a
hyperbolic hedgehog [11], a Saturn ring that surrounds a particle as the name implies [12, 13],
and two surface defects located at the poles of the particles known as boojums [11]. The
understanding of the condition for the creation of these various defects has been an important
problem of liquid crystal science, because topological defects have long been one of the
fundamental subjects of condensed matter physics, and liquid crystals have been extensively
studied as one of the experimentally accessible systems showing a rich variety of topological
defects. It is also because the interaction between particles and the resultant superstructures
sensitively depend on what kind of topological defects accompany the particles.

There have been several numerical attempts [14–20] to investigate the properties of
topological defects in a nematic liquid crystal around a particle. Several authors [21, 22]
have also been developing numerical schemes that can simulate liquid crystals containing two
or more mobile particles. However, the system possesses two characteristic lengths; one is
the size of the particles of the order of micrometres and the other is the coherence length of
the liquid crystal, which is of the order of the size of the topological defect cores (∼10 nm).
The coexistence of these largely different length scales makes the numerical problem highly
challenging. Most of the previous studies deal with the orientational order using a director
description n, where the core of a topological defect has to be treated as a singular point and
the introduction of some cutoff is inevitable. Moreover, since the numerical resolutions in the
previous studies are insufficient, ‘numerical pinning’ of the topological defects occurs, which
makes it almost impossible to investigate the dynamical behaviour of topological defects.

In our previous studies [18–20], we have employed the description of the orientational
order in terms of a second-rank tensor Qαβ , which allows a direct treatment of topological
defects without introducing any singularities. Moreover, to overcome the numerical difficulties
arising from the large difference between the size of a particle and that of the core of a
topological defect, we have devised an adaptive mesh refinement scheme, where fine numerical
grids are assigned only around topological defects and sufficient numerical resolution is
achieved with greatly reduced resources. We have already shown that the numerical resolution
is fine enough to observe the detailed structure of a ring-like hyperbolic hedgehog [19]. We
have also presented the dynamical simulation of the splitting of a −1 topological defect into
two defects with charge −1/2 around a circular particle in two dimensions [18]. We emphasize
that this was the first numerical study exhibiting successfully the dynamical behaviour of a
topological defect around a particle.

This paper focuses on the dynamics of the liquid crystal orientation profile together with
the topological defects around a spherical particle when an external perturbation is applied to
the system. In the first part of this paper, section 2, we present our numerical results under
the application of an external magnetic or electric field. It was predicted by Stark [15] that a
hedgehog configuration becomes energetically unstable compared with a Saturn ring under the
application of an external magnetic or electric field parallel to the symmetry axis. Loudet and
Poulin [23] later confirmed this prediction experimentally by observing the transition from a
hedgehog to a Saturn ring under an electric field. They also found that after the cessation of
the field a Saturn ring becomes unstable and shrinks to a hedgehog when the particle radius is
sufficiently large [24]. However, the argument in [15] was based on the comparison of the free
energy for the two configurations, and the dynamics of topological defects in the transition
process was never discussed. In our previous study [20], we successfully reproduced the
dynamics of the transition from the hedgehog to the Saturn ring configuration in computer
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simulations for the first time. In this paper we will give a more detailed argument on the
motion of the topological defect in the transition process.

The second part, section 3, is devoted to the discussion of the effect of a uniform
hydrodynamic flow on the liquid crystal orientation. Because of the coupling between the
orientational order and the fluid velocity, the hydrodynamics of a liquid crystal is far more
complicated than that of a usual isotropic fluid and,even in a simple geometry such as a uniform
shear, the response of a liquid crystal is not at all trivial, depending on the relative orientation
of the flow direction, the shear direction and the director [25]. The hydrodynamic behaviour of
liquid crystal colloidal dispersions is even more complex and provides a challenge to theoretical
and computational physicists. There have been several numerical attempts [26–30] to deal
with the hydrodynamics of a nematic liquid crystal around a particle. However, many of them
assumed that the equilibrium director profile is not distorted by the flow because the fluid
velocity is small enough or a strong external field is applied. Only very few studies [28, 30]
discussed how the director profile around a particle or a cylinder is influenced by the imposed
flow. Moreover, those previous studies calculated only the stationary profiles of the director
and the fluid flow. So far as we know, none of them dealt with the dynamical behaviour, or
the relaxation process to a stationary state of the director and the fluid flow, which is the main
subject of section 3. We will give a brief conclusion in section 4.

2. Field-induced transition of a topological defect

In this section, we present our numerical results as to how an external magnetic or electric
field affects the orientation profile of a nematic liquid crystal around a spherical particle. To
describe the orientational order,we use, as in our previous studies [18–20],a second rank tensor
Qαβ that satisfies Tr Q = Qαα = 0 (hereafter summations over repeated indices are implied).
The employment of the tensor order parameter is consistent with the head–tail (n ↔ −n)
symmetry of a nematic. Moreover, with the tensor description we do not have to treat the cores
of topological defects as singularities as in the director description.

The free energy density in terms of the order parameter Qαβ is written as f = fbulk(Qαβ)+
fel(Qαβ ,∇) + fext(Qαβ , H̃α), where fbulk(Qαβ) is the bulk local energy, fel(Qαβ ,∇) is the
elastic energy due to the distortion of the orientation profile, and fext(Qαβ , H̃α) is the energy
due to an external (magnetic or electric) field H̃ . In terms of the Landau–de Gennes expansion,
the bulk energy fbulk reads

fbulk = − 1
2 A Tr Q2 + 1

3 B Tr Q3 + 1
4 C(Tr Q2)2 + λ Tr Q, (1)

where the last term ensures Tr Q = 0. As in the previous studies [19, 20] we set the
phenomenological coefficients as C = −B = 3A in this section, so that an order parameter
with uniaxial symmetry

Qαβ = Q0
(
nαnβ − 1

3δαβ

)
(2)

with Q0 = 1 minimizes fbulk. In equation (2), Q0 serves as a scalar order parameter that
describes the strength of the nematic order and a unit vector n corresponds to the director. In
a simplified one-constant form, the elastic energy fel is given by

fel = 1
2 L1∂γ Qαβ∂γ Qαβ (3)

with L1 being the elastic constant. We adopt the following form for the energy fext due to the
external field:

fext = −H̃α H̃β

Qαβ√
Tr Q2

. (4)
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Here we consider the situation that the director tends to be parallel to the field as the minus sign
indicates. Notice that we have not used a usual form of the free energy −H̃α H̃β Qαβ due to the
external field. When we use −H̃α H̃β Qαβ , the scalar order parameter Q0 in equation (2) that
minimizes the bulk energy fbulk + fext will change according to the variation of the strength
of the external field. This may cause a mismatch between the order parameter in the bulk and
that at the particle surface, which is fixed as prescribed below. To avoid such a mismatch, we
employ instead equation (4) as the free energy due to the external field (we note that substituting
equation (2) into (4) yields −(

√
6/2)(H̃ · n)2 which is independent of Q0. The scalar order

parameter Q0 that minimizes fbulk + fext is therefore independent of H̃ ). We are interested in
the deep nematic state and not in the variation of the strength of the orientational order Q0 due
to the external field. We also notice that in the bulk Qαβ takes the form of equation (2) with
fixed Q0 throughout the system except the very small region around the defect core. Therefore
the factor 1/

√
Tr Q2 in equation (4) just renormalizes the field strength.

The dimensionless field H̃ is associated with a dimensional one H as H̃ 2 = �χ H 2/
√

6,
with �χ being the anisotropy of the susceptibility that is assumed to be positive. We note that
a uniform field employed in the following numerical calculations can be more safely assumed
in the case of a magnetic field than an electric field.

We assume that the anchoring is homeotropic and rigid at the particle surface with radius
R0 so that the order parameter becomes Qαβ = Qs(νανβ −(1/3)δαβ) with Qs = Q0 = 1 and ν

being a unit vector normal to the particle surface. Therefore, a surface energy does not appear
in our system. As the boundary condition at infinity, we set Qαβ = Q0(ez

αez
β − (1/3)δαβ) =

Q0(δzαδzβ − (1/3)δαβ), where ez is a unit vector parallel to the z-axis. Therefore, we consider
a case where a particle is immersed in a nematic liquid crystal uniformly aligned along the
z direction. We also assume rotational symmetry about the z-axis, which renders the numerical
problem an effectively two-dimensional one.

In this section we use the following simplified relaxation equation for the dynamics of the
orientational order, although we will deal with a full set of hydrodynamic equations in the next
section:

∂

∂ t
Qαβ(r) = −


δF

δQαβ(r)
, (5)

where F = ∫
dr f is the total free energy of the system and 
, assumed to be a constant, is

a kinetic coefficient associated with the rotational viscosity. Further details of the numerical
calculations are given in our previous articles [19, 20].

Before presenting our numerical results, we notice that the system possesses two
characteristic lengths apart from the particle radius R0, and we will express them as
dimensionless quantities in units of R0. One is the nematic coherence length defined as

ξ = √
L1/A/R0 and the other is the magnetic coherence length ξH =

√
L1/H̃ 2/R0. In the

following numerical calculations, we have set ξ = 3.65×10−3 (ξ2 = 1.33×10−5), for which
the hedgehog configuration is stable when no external field is applied and the equilibrium
profile of the hedgehog configuration is used as the initial condition. Note also that from the
definition ξ−1

H is proportional to H̃ and can be regarded as a reduced field strength.
In figure 1, we show the time evolution of the orientation profile from the equilibrium

hedgehog configuration after the application of the external field parallel to the symmetry
axis (z-axis) at t = 0. Grey-scale plots of Q2

zz are employed and in the black regions, the
director is parallel to the z-axis. Therefore the effect of the external field manifests itself in
the larger black regions after its application (we note again that we consider the cases with
positive �χ , where the director tends to align parallel to the field). When the field is weaker
than some threshold value (ξ−1

H � 10.6), the hedgehog configuration is stable as can be seen
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Figure 1. Time evolution of the orientation profile (grey-scale plots of Q2
zz ). The z-axis, which is

parallel to the symmetry axis and the field direction, is along the horizontal direction. The numbers
indicate the time after the application of the field. The first and the second rows show the results
for ξ−1

H = 10.0 and 11.0, respectively.

in the first row of figure 1 with ξ−1
H = 10.0. We can also find that the hedgehog defect moves

closer to the particle after the application of the field. When the field is strong enough, the
hedgehog configuration becomes unstable. The hedgehog defect is originally made up of a
small ring [19] and its radius grows with time. Eventually the orientation profile takes a Saturn
ring configuration, although this may be hard to observe from figure 1 because the defect is
too close to the particle. This result qualitatively reproduces the experiment by Loudet and
Poulin [23] who observed the transition of a hedgehog to a Saturn ring by the application of
an electric field.

To observe the motion of the defect more clearly, we show in figure 2 the trajectories of
the defect cores for different field strengths larger than the threshold value for the transition.
When the field is weak and close to the threshold value (ξ−1

H = 11.0), the defect first moves
closer to the particle without opening up, or in other words, while retaining the hedgehog
configuration, and afterwards it opens up to transform to a Saturn ring. However, under a
stronger field (ξ−1

H = 12.6), the approaching of the defect to the particle and the opening up
of the defect occur simultaneously. When we increase the field strength further (ξ−1

H = 14.1),
the defect opens up first without approaching the particle, and afterwards the distance of the
defect to the particle surface decreases gradually. The difference in the transition process for
different field strength is significant and we believe that the experimental resolution is fine
enough to detect it.

We also find from figure 2 that the motion of the defect becomes slower when the Saturn
ring configuration is approached. It is obvious from the consideration of the symmetry that
the force acting on the topological defect from the elastic deformation of the liquid crystal is
zero just at the Saturn ring configuration. Indeed, Loudet et al [24] reported that the motion of
the defect is very slow when the deviation from the Saturn ring configuration is small enough,
although their experimental situation is different from ours; they observed the transition process
from the Saturn ring to the hedgehog configuration after the cessation of the external field.
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Figure 2. Trajectories of the topological defect after the application of the field for different field
strengths. The z-axis is along the horizontal direction and the arc is a part of the particle surface.
The unit of the length is the particle radius R0. The time interval between two adjacent points is
937.5/
 A for all ξ−1

H .

3. Effect of hydrodynamic flow on the liquid crystal configuration

In this section, we present some preliminary results on the effect of a uniform hydrodynamic
flow on the director configuration of a nematic liquid crystal around a spherical particle. Here
we give only the outline of the model employed; the details of the numerical calculations will
be presented elsewhere.

A spherical particle with radius R0 is fixed so that the centre of the particle is located at
the origin of the coordinate system. As in the previous section, strong homeotropic anchoring
is imposed at the surface of the particle and the order parameter Qαβ is uniaxial and fixed,
with the principal eigenvector of Qαβ being parallel to the surface normal (or the radial unit
vector er). The degree of orientational order at the surface is the same as that in the bulk. The
orientational order at infinity is taken to be uniform and parallel to the z-axis. We impose a
uniform flow with speed v∞ at infinity that is parallel to the z-axis (or the orientational order).
A no-slip boundary condition at the particle surface is employed, so that v = 0 there. As in
the previous section, we also assume here that the system possesses rotational symmetry about
the z-axis and therefore the numerical problem is an effectively two-dimensional one.

There have been several theoretical attempts to formulate the hydrodynamic equations for
the velocity v(r) and the tensor order parameter field Qαβ(r) of a nematic liquid crystal [31–
35]. We use those given by Olmsted and Goldbart [32], which are written, after some
appropriate rescaling of the length, the time, and the order parameter Qαβ , as

Re

(
∂

∂ t
+ v · ∇

)
vα = ∂γ

[
2κ [s]

αγ +
1

Er∗ (−β1 H [s]
αγ + σ i[a]

αγ + σ d
αγ ) − pδαγ

]
, (6)

(
∂

∂ t
+ v · ∇

)
Qαβ − (κ [a]

αγ Qγβ − Qαγ κ
[a]
γβ ) = β1κ

[s]
αβ +

1

β2 Er∗ H [s]
αβ . (7)

Here the units of length and time are R0 and R0/v∞, respectively. The velocity gradient tensor
is καβ ≡ ∂αvβ . The superscripts [s] and [a] denote the symmetric and the anti-symmetric
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components of a second-rank tensor, respectively. Hαβ ≡ −δF/δQαβ is the molecular field
with F being the free energy of the system. The precise form of Hαβ after rescaling will be
given below. σ

i[a]
αβ = H [s]

αγ Qγβ − Qαγ H [s]
γβ is the anti-symmetric component of the stress tensor

arising from the coupling between the orientational order and the flow. The elastic stress is
given by σ d

αβ = −(∂ F/∂(∂α Qµν)) × ∂β Qµν . The rescaled kinetic coefficient β1 is associated

with the off-diagonal kinetic coupling between Qαβ and v. Another kinetic coefficient β2 is
the rescaled rotational viscosity.

After the rescaling, the molecular field Hαβ reads

Hαβ = −τ Qαβ +
3
√

6

4
Qαγ Qγβ − (Tr Q2)Qαβ + ξR

2∇2 Qαβ + λδαβ, (8)

where the external field H̃ is set to zero and we employ a definition of the (dimensionless)
nematic coherence length different from that in the previous section: ξR ≡ √

L1/Cs2/R0 with
s ≡ 2

√
6|B|/9C being a variable appearing in the rescaling of the order parameter. As the

reduced temperature, we choose τ = (3
√

6 − 8)/12, so that an order parameter with uniaxial
symmetry, equation (2) with Q0 = 1, minimizes the bulk energy.

One of the important dimensionless quantities characterizing the problem is the ratio of
viscous force to the elastic force of a nematic liquid crystal:

Er = Er∗

ξR
2 = β3v∞ R0

2s2 L1
, (9)

where β3 is associated with the isotropic part of the viscosity whose precise definition can be
found in [32]. Er is nothing more than the Ericksen number apart from the numerical factor.
The Reynolds number Re = 2ρv∞ R0/β3, with ρ being the mass density of the liquid crystal,
is much smaller than unity in our problem dealing with a micrometre-size particle and set to
zero in our calculations.

Using the material parameters in [32], we set β1 = 1.4 and β2 = 2. The dimensionless
nematic coherence length is ξR = 5 × 10−3, which corresponds to taking R0 � 3 µm when
we use the material parameters of [32] again. For R0 = 3 µm, the Ericksen number is
Er � 1.2 × 10−2 × (v∞ (µm s−1)). Therefore, to achieve Er � 1, v∞ must be as large
as 80 µm s−1. However, from equation (9) Er is proportional to R0 and when we take
R0 = 20 µm, v∞ � 12 µm s−1 (smaller than the particle radius per second) is sufficient for
Er � 1. We also notice that for ξR = 5 × 10−3, the hedgehog configuration is stable and in
the following calculations we use the equilibrium profile of the hedgehog configuration as the
initial condition.

In figure 3, we show how the orientation profile of a nematic liquid crystal around a particle
evolves with time after the application of a flow with |Er | = 0.1. We find almost no change
in the orientation profile, confirming the assumption of fixed director profile in the previous
studies dealing with low Ericksen number cases. This result is natural because |Er | = 0.1
implies that the viscous force of the fluid is so weak as compared with the elastic force of the
liquid crystal that the fluid flow cannot disturb the orientation profile (recall the definition of
the Ericksen number given in equation (9)).

We show next in figure 4 the streamline patterns for |Er | = 0.1. A small Ericksen
number implies in turn that the fluid flow is strongly influenced by the orientational order of
the liquid crystal. We notice that in the hydrodynamic equation for the fluid velocity (6), the
anisotropy of the viscosity is neglected as in the original version of Olmsted and Goldbart [32].
When the coupling between the orientational order and the fluid flow is absent, that is the
term proportional to 1/Er∗ in equation (6) is dropped, equation (6) with Re → 0 yields the
Stokes flow, which is shown in figure 4 as a reference. We find that the deviation of the flow
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Figure 3. Time evolution of the orientation profile (grey-scale plots of Q2
zz ) for |Er| = 0.1 with

different flow directions. The z-axis, which is parallel to the symmetry axis and the flow direction,
is along the horizontal direction. The numbers indicate the time after the application of the flow.
The arrows indicate the direction of the flow at infinity relative to the fixed particle.

profile from that of the Stokes flow is significant even in the absence of the anisotropy of the
viscosity and that for both directions of the fluid flow, on the right-hand side of the particle, the
streamlines get closer to the particle than the Stokes flow. At present our numerical scheme for
the determination of the velocity profile heavily relies on the assumption that the viscosity is
independent of the position. The incorporation of the anisotropic viscosity should be important
to the full understanding of the hydrodynamic behaviour of the liquid crystal and will be the
subject of future studies.

We also present the results for an intermediate Ericksen number |Er | = 1. In figures 5
and 6 we show the time evolution of the orientation profile and the streamline patterns at
t = 20, respectively. In contrast to the previous cases with |Er | = 0.1, the orientation profiles
are strongly distorted by the flow. It is important to notice that while in the case of applying
an external field H̃ , the free energy is symmetric under the transformation H̃ ↔ −H̃ , the
hydrodynamic equations (6) and (7) are not under the transformation v → −v. Therefore the
fluid flows with different directions yield different responses of the orientational order of a
liquid crystal as is evident in figure 5. In the first row of figure 5 where the liquid crystal flows
from left to right (or from the defect to the particle), the white region with Qzz = 0 is enlarged
in the right direction. It is intuitively understood that such behaviour of the orientation profile
is attributed to convection. When the flow direction is from the particle to the defect, the
white region is pushed along the flow direction again by convection. We also find that with the
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Figure 4. Streamline patterns for |Er| = 0.1 with different flow directions at t = 4. The arrows
indicate the direction of the flow at infinity relative to the fixed particle. The hedgehog is located
to the left of the particle as in figure 3. The z-axis, which is parallel to the symmetry axis and the
flow direction, is along the horizontal direction. The dotted curves correspond to the Stokes flow.

Figure 5. The same as figure 3 for |Er| = 1.
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Figure 6. The same as figure 4 for |Er| = 1 at t = 20.

passage of time, the grey regions appear far from the particle, which indicates that the director
deviates from the z direction there. Closer inspection of the numerical results, whose details
are not shown here, reveals that such regions appear first to the right of the particle and they
become larger by convection. The streamline patterns in figure 6 show deviations from that of
the Stokes flow as in the case of |Er | = 0.1.

Finally we comment that Stark and Ventzki [30] expect that a hedgehog might be unstable
enough to transform to a Saturn ring under a strong flow field with |Er | 
 1. In our preliminary
studies with larger Ericksen numbers, however, such a transition has not been observed; in
spite of a larger elastic deformation of the liquid crystal the hedgehog defect itself seems stable.
At the present stage for the hydrodynamic problem, we use ‘fixed’ numerical grids with finer
grids located around the initial position of the defect core and the mesh rearrangement as in the
previous section is not employed here. Therefore significant motion of the defect core cannot
be traced in the present scheme (in the calculations presented here, the motion of the defect is
so small that it stays within the finest grids allocated initially). Moreover, anisotropic viscosity,
which is not incorporated in our study, might be relevant to the stability of a hedgehog defect
under flow. Further elaborated studies will be necessary to answer the question whether a
hedgehog can be unstable under a flow field.

4. Conclusion

In this paper we presented some of our numerical results as to how external perturbations affect
the orientation profile of a nematic liquid crystal around a spherical particle. In particular we
focused on the dynamical behaviour of the orientation profile and the topological defects that
accompany the particle, which almost no previous numerical work has studied so far.

In the first part of this paper, section 2, we discussed how an external magnetic or electric
field influences the orientation profile of a liquid crystal around a particle with a hedgehog
defect. We reproduced successfully, with the aid of an adaptive mesh refinement scheme
together with the description of the order parameter in a second-rank tensor, the transition
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from a hedgehog to a Saturn ring, which was predicted in a previous theory and confirmed in
recent experiments. We further made a detailed analysis of the transition processes and found
that when the field strength is just above the threshold value for the transition, the hedgehog
defect first approaches the particle and after that it opens up to transform itself to a Saturn ring.
By contrast, under a stronger field the hedgehog first opens up before approaching the particle.
The distance between the defect core and the particle surface becomes smaller gradually until
the defect finally takes the Saturn ring configuration. We expect that this difference in the
transition process can be checked in carefully controlled experiments.

The second part, section 3, was devoted to the discussion as to how the hedgehog profile of a
nematic liquid crystal around a particle is affected by the application of a uniform hydrodynamic
flow. For a small Ericksen number, when the viscous force arising from the fluid flow is much
smaller than the elastic force of a liquid crystal, almost no effect of the fluid flow on the
orientation profile is observed, as expected. The fluid flow in turn is significantly influenced
by the coupling with the orientational order and shows a strong deviation from that of the Stokes
flow. For an intermediate Ericksen number, the nematic liquid crystal is strongly convected
by the fluid flow which results in a significant elastic deformation as compared with the initial
profile. In contrast to the cases under a magnetic or electric field, the hydrodynamic equations
are not invariant under the transformation v ↔ −v and therefore the response of the liquid
crystal is different under flows with different directions. However, our numerical scheme has
not been elaborated enough to give a definite answer to the interesting and important question
of whether a uniform hydrodynamic flow can induce a transition of a hedgehog defect, which
will be a subject of future studies.

In this paper we dealt with a system that contain one particle and, as noted in the
introduction, several authors have been developing numerical schemes that can simulate
liquid crystal colloid dispersions with two or more mobile particles. However, we would
like to conclude this paper by emphasizing that liquid crystal colloid dispersions still provide
a challenge to computational physicists because of the difference in the characteristic lengths
associated with particles and liquid crystals together with the coupling between the degrees of
freedom of particles and liquid crystals. Much still remains to be investigated, in particular in
the dynamical aspects of liquid crystal colloid dispersions.
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